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OBSERVATION AND ANALYSIS BASED CODE
OPTIMIZATION

BACKGROUND OF THE INVENTION

Co-pending U.S. patent application Ser. No. 12/847,925
entitled “ASSUMPTION-BASED OPTIMIZATION;,” filed
Jul. 30, 2010, the entire contents of which are hereby incor-
porated by reference for all purposes, discloses optimizing a
compiled code based an assumption, for example, and testing
at runtime to ensure, prior to executing the optimized code,
whether the assumption is true. Such a technique may be
used, for example, to create a more efficient compiled version
of software code written in a dynamic and flexible scripting
and/or other programming language, such as JavaScript®.

A characteristic of dynamic languages, such as JavaS-
cript®, is that certain attributes cannot be determined conclu-
sively in advance to have a particular value. For example, the
variable type of a variable typically cannot be guaranteed to
be ofa predetermined type. Similarly, at runtime a target (e.g.,
location of code corresponding to) a called function may have
changed. As another example, the code comprising an opera-
tion may change. As such, typically at least certain techniques
commonly used to generate optimized compiled versions of
less dynamic code, such as statically typed code, have not be
available to be used to optimize compiled versions of code
written in a dynamic language such as JavaScript®.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention are disclosed in the
following detailed description and the accompanying draw-
ings.

FIG. 1 illustrates an example in which JavaScript® is
executed at runtime by an interpreter, an example of source
code being compiled into compiled machine code prior to
runtime, an example of compiled machine code being pro-
vided to a CPU for execution at runtime, and an example of
pre-compiled JavaScript® being provided to a CPU for
execution at runtime.

FIG. 2 is a flow diagram illustrating an embodiment of a
process for processing source code written in a traditionally
interpreted language.

FIG. 3 is a flow diagram illustrating an embodiment of a
process for processing source code written in a traditionally
interpreted language such as JayaScript®.

FIG. 4 is a flow diagram of an embodiment of a process for
generating compiled code and fallback code, where the com-
piled code is based on an assumption and the fallback code is
not.

FIG. 5 is a flow diagram of an embodiment of a process for
generating compiled code and fallback code, where the com-
piled code is based on an assumption and the fallback code is
not.

FIG. 6 is a flow diagram illustrating an embodiment of a
process for optimizing compiled code based on an assump-
tion.

FIG. 7 is flow diagram illustrating an embodiment of a
process for rolling over from compiled code that is optimized
based on an assumption to fallback code that is not optimized
based on the assumption.

FIG. 8 is a block diagram illustrating an embodiment of a
system for processing source code written in a traditionally
interpreted language such as JayaScript®.

FIG. 9 is a block diagram showing an embodiment of a
system for processing source code written in a traditionally
interpreted language such as JayaScript®.
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FIG. 10 is a block diagram illustrating an embodiment of a
system for processing source code written in a traditionally
interpreted language such as JayaScript®.

FIG. 11 is a flow diagram illustrating an embodiment of a
process for optimizing software code.

FIG. 12 is a flow diagram illustrating an embodiment of a
process for optimizing code.

FIG. 13 is a flow diagram illustrating an embodiment of a
process for monitoring execution of code.

FIG. 14 is a flow diagram illustrating an embodiment of a
process for optimizing code.

FIG. 15 is a flow diagram illustrating an embodiment of a
process for inferring a dynamic value.

FIG. 16 is a flow diagram illustrating an embodiment of a
process for dynamically modifying code and/or an execution
path thereof based on observed behavior.

FIG. 17 is a flow diagram illustrating an embodiment of a
process for optimizing code.

FIG. 18 is a flow diagram illustrating an embodiment of a
process for monitoring execution of code.

FIG. 19 is a flow diagram illustrating an embodiment of a
process for dynamically modifying code and/or an execution
path thereof.

DETAILED DESCRIPTION

The invention can be implemented in numerous ways,
including as a process; an apparatus; a system; a composition
of matter; a computer program product embodied on a com-
puter readable storage medium; and/or a processor, such as a
processor configured to execute instructions stored on and/or
provided by a memory coupled to the processor. In this speci-
fication, these implementations, or any other form that the
invention may take, may be referred to as techniques. In
general, the order of the steps of disclosed processes may be
altered within the scope of the invention. Unless stated oth-
erwise, a component such as a processor or a memory
described as being configured to perform a task may be imple-
mented as a general component that is temporarily configured
to perform the task at a given time or a specific component
that is manufactured to perform the task. As used herein, the
term ‘processor’ refers to one or more devices, circuits, and/or
processing cores configured to process data, such as computer
program instructions.

A detailed description of one or more embodiments of the
invention is provided below along with accompanying figures
that illustrate the principles of the invention. The invention is
described in connection with such embodiments, but the
invention is not limited to any embodiment. The scope of the
invention is limited only by the claims and the invention
encompasses numerous alternatives, modifications and
equivalents. Numerous specific details are set forth in the
following description in order to provide a thorough under-
standing of the invention. These details are provided for the
purpose of example and the invention may be practiced
according to the claims without some or all of these specific
details. For the purpose of clarity, technical material that is
known in the technical fields related to the invention has not
been described in detail so that the invention is not unneces-
sarily obscured.

Assumption based optimization of software code is dis-
closed. In various embodiments, static and/or dynamic analy-
ses are performed to formulate a hypothesis that a dynamic
attribute likely will have at runtime a particular determined
value. As used herein, a dynamic attribute is one the value of
which cannot be determined, prior to runtime, to be guaran-
teed to have that value at runtime. Examples include the
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variable type of variables in code written in a dynamically
typed language, such as JavaScript®, the target of a function
called in code written in a dynamic language such as JavaS-
cript®, and the code corresponding to an operation defined in
such a dynamic language. Code is optimized based on an
assumption that the dynamic attribute will have the deter-
mined value. In various embodiments, the code includes code
to check at runtime to determine whether the assumption
based on which the code has been optimized is valid (for
example, to check if the variable is in fact of the type it was
assumed it would be) and/or code to roll over to a backup code
that is not based on the assumption in the event the assump-
tion is determined at runtime not to be valid in a particular
instance. Examples of techniques disclosed herein to deter-
mine the assumed value include, without limitation, an
extended static analysis of the code, such as static type analy-
sis, and dynamic analysis such as monitoring the execution of
code at runtime. For example, in some embodiments code is
monitored to determine, for example, whether a dynamically
typed variable in practice always has been of a particular
observed type, or whether the target of a function has
remained the same, etc.

In some embodiments, after a roll over to backup code,
execution may later use the code based on the assumption. For
example if in a prescribed number of instances the dynamic
attribute has been observed subsequent to roll over to have
had the previously-assumed value, then in some embodi-
ments execution may use the code that was optimized based
on the assumption.

The following portion of the present disclosure begins with
a discussion of assumption-based optimization of software
code (part I) and continues with a further discussion of opti-
mizing based on observations and/or assumptions made with
respect to the expected value of a dynamic attribute (part II).

1. Assumption-Based Optimization

Traditionally, computer code written in an interpreted lan-
guage such as JavaScript® is not executed directly by a com-
puter processor, and instead must be interpreted at runtime by
an interpreter, runtime environment, and/or other software
entity. An example of such a typical configuration is shown in
FIG. 1, specifically JavaScript® 102 is executed at runtime by
an interpreter 104 which interprets the JavaScript® instruc-
tions and provides corresponding machine code instructions
to central processing unit (CPU) 106 for execution. An inter-
preted language such as JavaScript® has the advantage of
being intuitive, flexible, and easy to program, but such lan-
guages may be slow to execute since the code needs to be
interpreted line by line at runtime before it can be executed.

By contrast, in traditional compiled programming lan-
guages, source code typically is compiled into machine code
prior to runtime, e.g., source code 116 shown being compiled
into compiled code 118 at a time earlier or separate from
runtime in FIG. 1. Machine code comprises very low level
instructions, which are typically stored in data storage and
subsequently executed directly by a processor, e.g., compiled
code 120 shown being provided directly to CPU 124 in FIG.
1, with the result that source code that has been compiled to
machine code typically executes on a processor more quickly
or efficiently than equivalent interpreted code (e.g., JavaS-
cript®), which requires an interpreter at runtime to execute
the equivalent machine code on the processor.

More recently, scripts and other code written in interpreted
languages such as JavaScript® have been precompiled to
machine code executable directly by a processor, e.g., pre-
compiled JavaScript® (i.e., machine code generated prior to
runtime based on JavaScript® ) 140 shown in FIG. 1 as being
provided to CPU 144 for execution at runtime. However, the
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gains achieved by compiling code written in an interpreted
dynamic language such as JavaScript® prior to runtime in the
past have been limited by the highly flexible, dynamic, and
sometimes unpredictable nature and behavior of code written
in such languages. For example, in JavaScript® the variable
type of a variable may be dynamically assigned or changed at
runtime and, as a result, certain optimizations that could
otherwise be performed on a pre-compiled version of such
code, for example type-specific optimizations, cannot be per-
formed, resulting in less optimized compiled code.

FIG. 2 is a flow diagram illustrating an embodiment of a
process 200 for executing software code. In the example
shown, a unit of assumption-based compiled code associated
with a unit of source code is executed 202. An assumption on
which a specific aspect of the assumption-based compiled
code is based (e.g., an optimization) is tested at a checkpoint
of the compiled code 204. A roll over or transition to fallback
code is performed and the fallback code is executed if the test
indicates the assumption is not true 206.

In some embodiments, the assumption-based compiled
code is low level machine readable code compiled from the
source code and is specific to the platform that it is compiled
for. The assumption-based compiled code is optimized in
some embodiments based on an assumption while the fall-
back code is not optimized based on this assumption. In some
embodiments, the assumption is one of a plurality of assump-
tions based on which the assumption-based compiled code is
optimized. In some embodiments, the assumption is an
assumption regarding a variable of the source code. In some
embodiments, the assumption is an optimistic assumption of
a likely form of'the input variable, such as a likely value, type,
and/or range of the variable.

In some embodiments, the assumption-based compiled
code includes instructions for testing the assumption at the
checkpoint, for invoking the fallback code when the assump-
tion is tested not true, and/or for rolling over to the fallback
code (e.g., updating the runtime state of the fallback code so
that the fallback code can continue correctly from the point
where the assumption-based compiled code is rolled over to
the fallback code). In some embodiments, the checkpoint is
one of a plurality of checkpoints throughout the assumption-
based compiled code for testing the assumption and the fall-
back code is executed when the assumption is tested not true
at any one of the checkpoints. In some embodiments, each of
the plurality of checkpoints corresponds to a separate unit of
fallback code customized to that particular checkpoint. Code
execution can continue correctly in the fallback code (from a
point corresponding to the particular checkpoint’s place in
the source code without re-starting the routine) when the
assumption is tested to be not true at the particular check-
point.

In one example, a variable in a unit of source code can be
dynamically assigned or changed at runtime to be an integer,
float, or string, however based on analysis (e.g., based on
dynamic analysis of past runs and/or static analysis of the
code), it is determined that the variable may likely be an
integer. Consequently, the assumption-based compiled code
is optimized by assuming that the variable will be an integer
so that the compiled code is simplified and made more effi-
cient in situations where the assumption holds true. However,
since the assumption-based compiled code is based on the
assumption that the variable is an integer, it may not run
correctly and/or efficiently in situations where this assump-
tion does not hold true. In contrast, the fallback code is not
based on the assumption and will run correctly when the
variable is not an integer, although the fallback code may be
less efficient than the assumption-based compiled code when
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the variable is an integer. The fallback code can be used as a
backup for the optimized assumption-based compiled code
when the assumption does not hold true.

FIG. 3 is a flow diagram illustrating an embodiment of a
process 300 for executing software code. In the example
shown, a unit of assumption-based compiled code associated
with a unit of source code and fallback code associated with
the source code are received and/or generated locally on a
local computing environment 302. The assumption-based
compiled code in some embodiments comprises low level
machine readable code that is optimized based on an assump-
tion, compiled based on the source code, and is specific to the
platform that it is compiled for. In contrast, the fallback code
is not optimized based on the assumption. In some embodi-
ments the fallback code is compiled machine code specific to
the platform it is compiled for, but is not optimized or other-
wise based on the assumption. In some embodiments the
fallback code is the original source code which is then inter-
preted.

The assumption-based compiled form of the source code is
executed when the source code is invoked 304. For example
when a user browses a webpage and invokes the JavaScript®
behind the webpage, a compiled version of the JavaScript®
that is optimized based on an assumption is executed. As the
assumption-based compiled code is executed, a checkpoint
for testing the assumption is encountered and the assumption
is tested at the checkpoint 306. For example, the assumption-
based compiled code in some embodiments includes check-
point code configured to test the validity of the assumption,
for example at a point in the execution of the assumption-
based code that occurs prior to a portion of the code that has
been optimized or otherwise based on the assumption. If the
assumption is tested to be true at the checkpoint 306, the
assumption-based compiled code continues to be executed
unless/until the above or in some embodiments another
assumption proves false 306 or until execution is done 310. If
the assumption is tested to be not true 306, the execution of
the assumption-based compiled code is rolled over to the
fallback code and the fallback code is executed instead 308. In
some embodiments, rollover involves updating the runtime
environment of the fallback code so that the fallback code can
continue execution correctly from where the assumption-
based compiled code stopped, and the system state is as if it
has always been executing the fallback code alone, and the
assumption-based compiled code had never been executed. In
some embodiments, rollover involves rolling back the runt-
ime environment to a saved state of the assumption-based
compiled code and then updating the runtime environment of
the fallback code with the saved state. In some embodiments,
updating the runtime environment of the fallback code
involves restoring the local variables and other relevant
machine state, which can include but is not limited to register
contents, stack state, and memory contents, while leaving the
global variables alone. The checkpoint can be located at any
appropriate point in the assumption-based compiled code.
For example, if a section of the assumption-based compiled
code is optimized based on an assumption, checkpoint(s) for
the assumption can be placed before or within the section of
code, so that the assumption can be tested before the execu-
tion of this section of code and/or during the execution of this
section of code. Detection and collapsing of redundant check-
points can be used to further optimize the assumption-based
compiled code.

FIG. 4 is a flow diagram of an embodiment ofa process 400
for generating assumption-based compiled code and fallback
code associated with a unit of source code, such as source
code written in a traditionally interpreted language such as

20

25

40

45

60

65

6

JavaScript®. In the example shown, source code is received
(e.g., downloaded from or uploaded by another device) 402.
Aninitial compiled version of the source code (e.g., compiled
machine code specific to a platform and can be directly read
by a processor) is generated 404. Analysis, such as static
analysis of the source code and/or initial compiled code,
and/or dynamic runtime analysis of the source code and/or
initial compiled code, is performed to determine whether an
assumption can be made that would allow an optimization of
the initial compiled version of the source code (e.g., a section
of the initial compiled version of the source code) 406. If an
assumption based on which the initial compiled version of the
source code can be optimized is found, the initial (or other
current) compiled version of the source code is optimized
based on the assumption to generate an optimized (or further
optimized) compiled version of the source code 408. The
optimized (or further optimized) compiled version of the
source code includes in some embodiments one or more
checkpoints for testing the validity of the assumption and for
rolling over to fallback code if the assumption is tested not
true. The process determines whether further optimization of
the compiled version of the source code based on additional
assumptions will be performed 406,410. If yes, the steps 406,
408, and 410 are repeated to perform such further optimiza-
tion. Analysis of the source and/or initially generated com-
piled code continues, and opportunities to optimize based on
apotentially valid assumption (if any) are taken advantage of,
until the entire code has been analyzed and no further oppor-
tunities for optimization based on an assumption are found
406, 410, at which time the process of FIG. 4 ends.

FIG. 5 is a flow diagram for an embodiment of a process
500 for generating assumption-based compiled code and fall-
back code associated with a unit of source code. In the
example shown, source code 502 is used to generate an initial
intermediate representation 504 of the source code that is not
optimized based on an assumption. The intermediate repre-
sentation 504 in the example shown goes through successive
rounds of optimization to generate subsequent intermediate
representations represented in FIG. 5 by intermediate repre-
sentations 506 and 508, the latter of which in this example is
used ultimately to generate final assumption-based compiled
code 512 that is optimized based on one or more assumptions.
In some embodiments, the source code comprises JavaS-
cript® and at least a subset of the intermediate representations
shown in FIG. 5 comprise LLVM or other byte code, or
another compiled or otherwise derived representation of the
original source code. In the example shown, the final inter-
mediate representation is used to generate assumption-based
compiled code 512 that is optimized based on one or more
assumptions. The initial intermediate representation 504 is
used in this example to generate a compiled code that used as
fallback code 510 that is not based on an assumption, e.g., one
based on which an optimization of the initial intermediate
representation 504 is performed to generate a subsequent,
optimized intermediate representation. In some embodi-
ments, for each intermediate representation that is optimized
based on an assumption, corresponding fallback code is gen-
erated based on an intermediate version (e.g., 1 through n in
this example) that is not based on that assumption, e.g., an
intermediate version as it existed immediately prior to an
optimization based on that assumption being performed. In
some cases further or subsequent iterations of optimization
may be facilitated by an assumption but may not themselves
be based on any new assumption, so that not every interme-
diate representation would have or would require correspond-
ing fallback code. In some embodiments, one or more
assumptions may be made without new compiled fallback
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code being generated, and instead for example the original
source code may be used as a fallback code if that particular
assumption is found not to be true at runtime. While in the
example shown in FIG. 5 multiple iterations of intermediate
representation of the source code are generated, in other
embodiments compilation may involve more or fewer stages
than shown in FIG. 5.

FIG. 6 is a flow diagram illustrating an embodiment of a
process 600 for optimizing compiled code based on an
assumption (e.g., the step 408 of FIG. 4). In the example
shown, the compiled code associated with the source code is
optimized based on an assumption 602. Code for testing the
assumption is true is added to the compiled code 604. Code
for rolling over to fallback code, if the assumption is found at
runtime not to be true, is added to the compiled code 606. In
various embodiments, the process 600 is repeated for each
assumption that is made.

FIG. 7 is flow diagram illustrating an embodiment of a
process 700 for rolling over from a unit of assumption-based
compiled code to fallback code. In the example shown,
assumption-based compiled code 704 associated with a unit
of source code 702 is optimized based on an assumption. The
compiled code 704 includes code configured to execute a roll
over to fallback code 706 that is not optimized based on the
assumption, beginning at an associated entry point 716. In the
example shown, the fallback code 706 is compiled code of the
source code 702 and is not optimized based on the assump-
tion. In the example shown, when the source code 702 is
invoked (e.g., when a user browses a webpage containing the
source code), the assumption-based compiled code 704 is
executed 708. At a checkpoint 712, the assumption is tested.
If the assumption is tested true, execution of the assumption-
based compiled code 704 continues (not shown in FIG. 7). If
the assumption is tested false, rollover code included in the
assumption-based compiled code 704 executes a rollover to
fallback code 706, which may involve updating a runtime
environment associated with the fallback code 706 to a state
in which it would have been had the fallback code 706 been
executing all along 714. Updating the runtime state may
involve restoring local variables, register contents, stack
states, memory contents, and/or other relevant machine
states, which may be specific to the particular architectures/
ABIl involved. Execution of the fallback code 706 begins and
continues from entry point 716 in the fallback code 706.

FIG. 8 is a block diagram illustrating an embodiment of a
system 800 for generating compiled code that is based on
(e.g., optimized based on) an assumption and fallback code
that is not based on the assumption. In the example shown,
source code 802 is provided to a parser and initial compiler
804, which parses the source code and generates an initial
intermediate representation. In various embodiments, the ini-
tial intermediate representation may be bytecode or another
derived representation of the original source code. The initial
intermediate representation is provided to an optimizing sec-
ond stage compiler 806, which performs one or more rounds
of optimization on the initially generated intermediate repre-
sentation and provides as output a second intermediate rep-
resentation of the source code 802, e.g., low level virtual
machine (LLVM) or another low level intermediate represen-
tation. The optimization may be based on one or more
assumptions, for example as discussed above in connection
with FIGS. 2 & 3. The system also includes a machine code
generator 808 that is configured to use the initial and/or the
second (and/or other subsequent) intermediate representa-
tions to generate device-specific or computing-platform-spe-
cific machine code, e.g., machine code appropriate to proces-
sors of the x86, ARM, or other architectures. The generated
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machine code may be cached in the data storage and made
available to each of one or more devices or systems, for
example at a subsequent device synchronization time with the
one or more devices or systems, machine code appropriate for
that device or system. In some embodiments, the machine
code generated based on the second intermediate representa-
tion and the machine code generated based on the initial
intermediate representation are used as the compiled code
optimized based on an assumption and the fallback code,
respectively, for the processes discussed in reference to FIGS.
2&3.

FIG. 9 is a block diagram of a computer system 900 used in
some embodiments to process software code as described
herein. FIG. 9 illustrates one embodiment of a general pur-
pose computer system. Other computer system architectures
and configurations can be used for carrying out the processing
described herein. Computer system 900, made up of various
subsystems described below, includes at least one micropro-
cessor subsystem (also referred to as a central processing unit,
or CPU) 902. That is, CPU 902 can be implemented by a
single-chip processor or by multiple processors. In some
embodiments CPU 902 is a general purpose digital processor
which controls the operation of the computer system 900.
Using instructions retrieved from memory 910, the CPU 902
controls the reception and manipulation of input data, and the
output and display of data on output devices.

CPU 902 is coupled bi-directionally with memory 910
which can include a first primary storage, typically a random
access memory (RAM), and a second primary storage area,
typically a read-only memory (ROM). A removable mass
storage device 912 provides additional data storage capacity
for the computer system 900. Storage 912 may also include
computer-readable media such as magnetic tape, flash
memory, signals embodied on a carrier wave, PC-CARDS,
portable mass storage devices, holographic storage devices,
and other storage devices. A fixed mass storage 920 can also
provide additional data storage capacity. A common example
of mass storage 920 is a hard disk drive.

In addition to providing CPU 902 access to storage sub-
systems, bus 914 can be used to provide access other sub-
systems and devices as well. In the described embodiment,
these can include a display monitor 918, a network interface
916, a keyboard 904, and a pointing device 906, as well as an
auxiliary input/output device interface, a sound card, speak-
ers, and other subsystems as needed. The pointing device 906
may be a mouse, stylus, track ball, or tablet, and is useful for
interacting with a graphical user interface. The network inter-
face 916 allows CPU 902 to be coupled to another computer,
computer network, or telecommunications network using a
network connection as shown.

The computer system shown in FIG. 9 is but an example of
a computer system suitable to implement techniques
described herein. Other computer systems suitable for such
use may include additional or fewer subsystems.

FIG. 10 is a block diagram illustrating an embodiment of a
system 1000 for processing a source code written in a tradi-
tionally interpreted dynamic language such as JavaScript®.
In the example shown, a device 1002 such as a phone, PDA,
portable computer, or other device is directly connected up to
a network via land wire and/or wirelessly through a gateway
1004 (in various embodiments through one or more other
networks, nodes, and/or devices not shown in FIG. 10), and
via the network with one or more web or other devices (e.g.,
server 1008, 1010). In various embodiments, the device 1002
is configured to access, via the internet 1006, web pages, web
applications, applets, widgets, or other resources available for
download from servers such as servers 1008 and 1010, all or
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some of which resources may include JavaScript® or other
traditionally interpreted code. In various embodiments, the
device 1002 is configured to execute various computer codes
such as a source code (e.g., a source code written in tradition-
ally interpreted dynamic language such as JavaScript® ), a
compiled code of a source code (e.g., compiled code that is
based on or not based on an assumption), and/or other derived
code of the source code such as a device independent inter-
mediate representation of the source code (e.g., intermediate
representation). In various embodiments, the device 1002 is
configured to in some instances download computer code
from another device or system (e.g., server 1008, 1010). In
various embodiments, the device 1002 is configured to, upon
the initial download of the source code written in interpreted
language such as JavaScript®, generate, optimize, and/or
cache an intermediate and/or other compile representation of
the downloaded source code. In various embodiments, the
device is configured to generate, optimize, and/or cache (e.g.,
prior to runtime or dynamically at runtime) a compiled
machine code of the source code that is specific to the com-
puting platform it is generated for and/or which is based on an
assumption, as described above. In some embodiments, the
device 1002 implements one or more of the processes of
FIGS. 2-6. In various embodiments, the device is configured
to cache the downloaded or generated code in data storage. In
various embodiments, the device 1002 is configured to make
the cached computer codes available to other devices (e.g.,
server 1008, 1010, device 1014, and personal computer 1012)
upon synchronization with the one or more devices.

II. Optimizing Based on Observed and/or Assumed Value
of Dynamic Attribute

FIG. 11 is a flow diagram illustrating an embodiment of a
process for optimizing software code. In the example shown,
at 1102 an expected value is determined for a dynamic
attribute the value of which cannot be determined conclu-
sively, prior to runtime, to have the expected value in all cases.
In various embodiments, one or more techniques may be used
to determine the expected value. For example, an expected
value may be determined by static and/or dynamic analysis of
a function or other code with which the dynamic attribute is
associated. For example, an hypothesis may be formed based
on static analysis of code that the dynamic attribute is related
to directly and/or indirectly that the dynamic attribute will,
and/or is likely to have at runtime, an expected value deter-
mined by the static analysis, even if the dynamic attribute
cannot be guaranteed to have that value, as would be the case,
for example, for atype attribute for a variable in software code
written in a dynamically typed programming language. In
various embodiments, one or more heuristics and/or algo-
rithms may be used to determine the “expected” value. For
example, in some cases an external variable associated with
but not internal to a function may be assumed (at least ini-
tially) to have a same type as an internal variable that has been
determined (conclusively or otherwise) to have (or be
expected and/or assumed at least initially to have) a deter-
mined type. In some embodiments, the determination may be
made based at least in part on dynamic observation of the
code during execution. For example, if a dynamically typed
variable is observed to have been of an observed type in at
least a threshold number of instances, without any (or more
than a second threshold number of) intervening instances
having been observed as having been of a type other than the
observed type, then in some embodiments the observed type
would be determined to be the “expected” type for the
dynamically typed variable.

At 1104, code that is optimized based on an assumption
that the dynamic attribute (likely) will have at runtime the
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value determined in 1102 to be the “expected” value is gen-
erated. In various embodiments, the code generated at 1104
included code configured to check at runtime to verify that the
dynamic attribute does in fact have the expected value, and if
not to roll over to backup code that is not based on an assump-
tion that the dynamic attribute has the expected value. For
example, in some embodiments if an instance of a dynami-
cally typed variable is determined at runtime to be of a type
other than an expected type based on which the code has been
optimized, a rollover to code not based on an assumption that
the variable will be of the expected type is performed.

FIG. 12 is a flow diagram illustrating an embodiment of a
process for optimizing code. In the example shown, at 1202 a
value of a dynamic attribute is monitored during execution of
a first version of a software code. If the dynamic attribute is
determined to have had a same observed value sufficiently
consistently, e.g., a prescribed number of occurrences and/or
observations, and/or over a prescribed period of time (1204),
then the code is compiled, re-compiled, and/or optimized
based on an assumption that the dynamic attribute (likely)
will have the observed value (1206). In the example shown,
the process continues, potentially with other dynamic
attributes being observed and on that basis determined to have
an observed value (1202, 1204) and further optimizations
being made based thereon (1206), until the process is done
(1208), for example, a period of monitoring and/or observa-
tion in an effort to further optimize the code, comes to an end.

In some embodiments, the process of FIG. 12 is used to
optimized code based on an assumption, determined based at
least in part by dynamic analysis of un-optimized code while
executing, that a dynamic attribute has been observed to
remain unchanged during execution. For example, code writ-
ten in a dynamic language such as JavaScript® may include
numerous “puts” to and “gets” from global properties the
location and/or value of which is not guaranteed to remain
unchanged during the course of execution of the code and/or
calls to methods of global objects and/or to global functions
that are not guaranteed to remain unchanged during execu-
tion. Similarly, functions in JavaScript® runtime libraries are
unlikely to change, but the nature of the language is such that
there is no guarantee that they will not change. For example,
the expression “Math.sin( )” invokes a method of a global
object that returns the sine of the argument to a prescribed
number of decimal places. Some developers may not realize
that the expression “Math.sin(a) +Math.sin(b)” results in two
calls to the “Math.sin” method of the Math global object, each
requiring a corresponding look up of the object location.
However, optimizations based on the assumption that the
location of the object will not change and/or the underlying
method will not change cannot simply be made, without
doing more analysis as well as runtime checking, because
other code may result in the location and/or method being
changed at runtime between the first and second call to the
method.

Similarly, the expression ‘“x=Math.pi*Math.pi requires
two “gets” of the constant value of pi, stored in JavaScript® as
the property Math.pi of the global object Math. An optimiza-
tion requiring only one get, such as a=Math.pi, x=a*a, cannot
simply be made, without doing more analysis as well as
runtime checking, because the location of the Math object
and/or the value of the constant “pi” may be changed, inten-
tionally or inadvertently, between the two gets.

Therefore, in some embodiments, un-optimized code is
instrumented to facilitate observation of the code during
execution. Where potential opportunities to optimize code (or
optimize further) by collapsing implicit puts/gets and/or
repeated look ups for successive global object method and/or
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function calls are identified, the code is instrumented to
record the location and/or a hash or other representation of
method/function code to determine whether it can (likely) be
assumed that the location and/or method/function are always
the same during execution. If so, then in some embodiments
code optimized based on an assumption that the location
and/or function will be and remain as observed is generated.
In some embodiments, static analysis is performed to identify
as large a section of code as possible within which it is
reasonable to expect that the location of a global property or
object and/or the content of a global function or method have
not changed, for example as a side effect of other code and/or
explicit or implicit “puts” to a global property or redefinition
of a global function or a method of a global object. The
optimized code includes code configured to test at runtime to
verify that the assumption is valid. If the assumption is found
not to be valid, execution reverts to code that has not been
optimized based on the assumption.

FIG. 13 is a flow diagram illustrating an embodiment of a
process for monitoring execution of code. In some embodi-
ments, the process of FIG. 13 is used to perform, facilitate,
and/or in connection with 1202 and/or 1204 of FIG. 12. In the
example shown, a dynamically typed variable (or other entity
with a dynamic attribute) in a first version of code is identified
to be observed (1302). Compiled code instrumented to
observe and/or record at runtime the variable type of observed
instances of the variable is generated (1304). The instru-
mented code is executed (1306). In various embodiments, as
instances of the monitored variable occur and/or are observed
during execution, the variable type of each observed instance
is recorded by the instrumented code. In some embodiments,
only a prescribed number and/or frequency of observations
are made. For example, the code may be instrumented to
observe and record the variable type of the first n occurrences
ofthe variable. The recorded variable type information is read
(from the location in which the instrumented code stored it)
and analyzed (1308). In some embodiments, the analysis
includes determining whether the observed variable type has
been (sufficiently) consistent during the observation period
and/or a sufficient portion thereof. If so, then the code in some
embodiments is (further) optimized based on an assumption
that the variable will be of the observed type. In some embodi-
ments, the number of observations made and/or the threshold
(for example, number of observed occurrences) to conclude
that code optimized based on an assumption that the dynamic
attribute (likely) will have the observed value is or may be
adjusted to reflect static analysis. For example, if by static
analysis an hypothesis is formed that the dynamic attribute
will have an hypothesized value, a fewer number of observed
instances of the attribute having that value may be considered
sufficient to confirm the hypothesis, whereas a greater num-
ber of observations may be required if static analysis was not
performed and/or was not sufficiently conclusive to form an
hypothesis.

FIG. 14 is a flow diagram illustrating an embodiment of a
process for optimizing code. In the example shown, the code
is analyzed statically to determine if the value of a dynamic
attribute can be inferred, even if not conclusively (1402). For
example, in a statically typed language, a variable that is
initialized and defined as an integer to which an operation that
increments the variable by adding “1” to it in successive
iterations (e.g., ++i in the C programming language), then the
result can be determined conclusively through static analysis
to remain an integer through each iteration. As a result, opti-
mizations that depend on the variable i being an integer, such
as replacing a general addition operation with integer +inte-
ger addition, which is a more efficient operation that the add
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operation that must be performed if the variables being added
are not all integers, can be performed. However, in a dynami-
cally typed language, such as JavaScript®, it cannot be guar-
anteed that a variable initialized as an integer and to which “1”
is added is successive iterations will in every case remain an
integer. In some embodiments, ifit can be determined through
static analysis of dynamically typed code, such as JavaS-
cript®, that a variable is initially and is likely to remain of a
particular type, such as integer, then at 1402 the type is
inferred to be the likely type. If a value can be inferred, even
if not conclusively (1402, 1404), then the code is compiled (or
re-compiled and/or otherwise optimized) based on an
assumption that the dynamic attribute will (likely) have the
inferred value (1406). In various embodiments the code com-
piled, re-compiled, and/or otherwise optimized at 1406
includes code to test at runtime whether the dynamic attribute
has the inferred value, and if not to roll over to backup code
that is not based on the assumption that the dynamic attribute
has the value inferred at 1402. If no (further) dynamic
attribute value can be inferred and/or once code has been
generated that is optimized based on one or more inferred
values, analysis continues until ended, for example, no fur-
ther candidates for inference are found (1408), at which time
the process ends.

FIG. 15 is a flow diagram illustrating an embodiment of a
process for inferring a dynamic value. In various embodi-
ments, the process of FIG. 15 is used to implement 1402 of
FIG. 14. In the example shown, it is determined whether the
value can be inferred directly (1502), inferred by observing
this or another value (1504), or inferred based on a previously
inferred and/or otherwise determined value (1506). For
example, a variable type may be inferred directly as in the
example above, in which while dynamically typed a variable
that is initialized to have a value that is an integer and to which
only integer are added (e.g., var i =0, ++i, etc.), then at 1502
it is inferred that the variable will (likely) be an integer, even
though it cannot be guaranteed to always be such. Similarly,
if a value related to the dynamic attribute is determined, for
example through observation of dynamic code during execu-
tion (e.g., JavaScript® while being executed by an inter-
preter) to consistently (or sufficiently consistent) have a par-
ticular observed value, then at 1504 it may be possible to infer
a value for the dynamic attribute. For example, if the variable
total is initialized to have an integer value and during obser-
vation it is determined that the value of array[i] has always
been observed to be an integer, then in some embodiments the
variable total in a function that adds to total the value of an
array [i] and returns the result would be inferred at 1504 to be
and (likely) remain an integer. In some embodiments, once
one dynamic value has been inferred (albeit inconclusively)
one or more further inferences may be made at 1506. For
example, if the internal variables of a function are inferred to
be of a particular type (e.g., integer), then in some embodi-
ments one or more related external variables may also be
inferred to be of the same type. If a value of the dynamic
attribute can be inferred (1502, 1504, 1506), then the code is
optimized based on an assumption that the dynamic attribute
(likely) will have the inferred value, and code to test the
assumption at runtime and roll over to backup code if the
assumption is not found to be valid is included (1508). The
process of FIG. 15 continues until done (1510), for example
no further dynamic attributes that are candidates for inference
are found.

FIG. 16 is a flow diagram illustrating an embodiment of a
process for dynamically modifying code and/or an execution
path thereof based on observed behavior. In the example
shown, execution of code that has been optimized based on an
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assumption with respect to a value of a dynamic attribute, e.g.,
as described herein, is monitored (1602) to determine
whether the code has rolled over to backup code more than a
threshold number of times and/or a threshold rate (instances
of rollover/time) due to the assumption having been deter-
mined at runtime to not be valid (1604). In some embodi-
ments, the code based on the assumption includes code to
increment a counter or other value each time the code rolls
over to backup code because the assumption has been found
to be not valid. In some embodiments, the code based on the
assumption includes code to detect that the threshold has been
reached. In some embodiments, a runtime or other environ-
ment in which the code based on the assumption is executed
tracks the number (and/or rate) of roll over events and/or
detects that the threshold has been reached. If the number
(and/or rate) of roll over events exceeds the threshold (1604),
then a version of the code that is not based on the assumption
is reverted to (1606), after which the process ends in the
example shown. Otherwise, monitoring continues until done
(1608), e.g., the code is no longer executing. In some embodi-
ments (not shown), if code not based on an assumption is
reverted to (1606) but the reverted to code is based on one or
more other assumptions, then monitoring of roll over events
due to those assumptions proving false at runtime continues,
until done (1608).

FIG. 17 is a flow diagram illustrating an embodiment of a
process for optimizing code. In the example shown, a
dynamically typed variable is assumed to be a 32 bit integer
(1702). For example, in JavaScript® the default representa-
tion of all variables is as a 64 double floating point number.
However, many operations can be performed more efficiently
if the assumption that the arguments are 32 integers can be
made. In some embodiments, where static analysis and/or
dynamic analysis indicate that a JavaScript® variable can be
assumed at least initially to be a 32 integer, then the assump-
tion is made (1702). If a JavaScript®, e.g., variable assumed
to be a 32 integer at runtime were to turn out not to be a 32
integer, then typically a buffer allocated to store the variable
would overflow. In some embodiments, a buffer overflow is
monitored for and if detected triggers a roll over to code that
is not based on an assumption that the associated variable is a
32 integer. In the example shown in FIG. 17, for example, if
an assumption that a JavaScript® or other dynamically typed
variable (likely) will be a 32 integer is made, then code thatis
optimized based on the assumption, and which includes code
to roll over to code not based on the assumption in the event
of a buffer overflow, is generated (1704). Examples of opti-
mizations based on an assumption that a variable (likely) will
be a 32 integer include configuring the code to store the
variable as a 32 integer and/or using integer-specific versions
of one or more operations, such as “add”, in place of more
generically applicable but less efficient versions of those
operations.

FIG. 18 is a flow diagram illustrating an embodiment of a
process for monitoring execution of code. In the example
shown, a buffer in which a variable that has been assumed to
be a 32 bit integer is stored is monitored for overflow (1802).
In the event of an overflow (1804), a roll over to code not
based on an assumption that the variable is a 32 bit integer is
performed (1806). Otherwise, monitoring continues until
done, e.g., the code is no longer executing and/or the currently
executing code is not based on any remaining assumption that
a variable is a 32 bit integer (1808).

FIG. 19 is a flow diagram illustrating an embodiment of a
process for dynamically modifying code and/or an execution
path thereof. In various embodiments, the process of FIG. 19
is used to execute a roll over to backup code if an assumption
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based on which code has been optimized is found not to be
true in a particular instance, but to then revert to the optimized
version of the code in the event conditions indicate that it may
again be reasonable and/or increase efficiency to once again
make the assumption. In the example shown, the validity ofan
assumption based on which the monitored code has been
optimized is monitored, e.g., tested at runtime prior to execu-
tion of a portion of code that has been optimized based on the
assumption, as described herein (1902). In the event of a
rollover to backup code, e.g., due to the assumption having
been found not to be valid in a particular instance (1904), then
execution of the backup code to which execution has rolled
over is monitored to determine whether the assumption
should once again be made (1906). Examples include moni-
toring a value of a dynamic attribute that had been assumed to
have an assumed value but was found in a particular instance
to not have that value, resulting in a roll over (1904). If, for
example, in more than a threshold number of subsequently
observed instances the dynamic attribute were found to have
the previously assumed value (1908), then the code that was
optimized based on the assumption that the dynamic attribute
(likely) would have the assumed value is reverted to (1910).
Monitoring for roll over (1902, 1904) and/or to determine
whether to revert to code that was optimized based on the
assumption (1906, 1908, 1910) continues until done (1912,
1914), e.g., the code stops executing. In some embodiments,
each time a roll over occurs subsequent to a first roll over the
threshold number of observations of the dynamic attribute
having the previously assumed value required to revert to the
code optimized based on the assumption increases. In some
embodiments, to avoid thrashing a limit is imposed on the
number of times the code will revert to the version optimized
based on the assumption. For example, in some embodiments
after the n-th roll over no reversion to the code based on the
assumption is permitted or executed and instead the backup
code not based on the assumption continues to execute and
monitoring of the value of the dynamic attribute is discontin-
ued. In some embodiments, monitoring and potentially
reverting to the code based on the assumption may resume,
for example after a prescribed, configured, configurable, and/
or dynamically determined wait period.

The techniques described herein enable optimal code to be
generated and executed in dynamic environments, including
by providing more efficient execution of compiled versions of
code provided originally in a dynamically typed and/or oth-
erwise dynamic language such as JavaScript®.

Although the foregoing embodiments have been described
in some detail for purposes of clarity of understanding, the
invention is not limited to the details provided. There are
many alternative ways of implementing the invention. The
disclosed embodiments are illustrative and not restrictive.

The invention claimed is:
1. A computer-implemented method for optimizing a man-
ner in which a software code is executed, comprising:

during a compilation of the software code:

determining, for a dynamic attribute associated with the
software code, an expected value that the dynamic
attribute will take on at a runtime of the software code,
wherein the software code is dynamically typed, and
determining the expected value comprises applying a
static type inference analysis to the dynamically typed
software code;

generating an un-optimized version of the software code,
wherein the un-optimized version is based on an
assumption that the dynamic attribute will not have the
expected value;



US 9,195,486 B2

15

generating an optimized version of the software code,
wherein the optimized version is based on an assump-
tion that the dynamic attribute will have the expected
value; and

modifying the optimized version to include code that is
configured to cause the optimized version during execu-
tion to:

transition into executing to the un-optimized version in an
event it is determined that the dynamic attribute does not
have the expected value, and

revert to executing the optimized version subsequent to the
transition, in the event it is determined that in at least a
threshold number of instances observed subsequent to
the transition the dynamic attribute has had the expected
value.

2. The method of claim 1, wherein the dynamic attribute
comprises a variable type.

3. The method of claim 1, wherein the dynamic attribute
comprises a location in memory.

4. The method of claim 1, wherein the dynamic attribute
comprises a location in which a global object, property, or
variable is stored.

5. The method of claim 1, wherein the dynamic attribute
comprises a contents of a global function or method.

6. The method of claim 1, wherein the dynamic attribute
comprises a value of a global property or variable.

7. The method of claim 1, wherein the software code com-
prises un-compiled source code.

8. The method of claim 1, wherein the software code com-
prises un-compiled source code written in JavaScript®.

9. The method of claim 1, wherein the optimized version of
the software code comprises compiled code.

10. The method of claim 1, wherein determining the
expected value comprises a static analysis of the software
code.

11. The method of claim 1, wherein determining the
expected value comprises analyzing statically all or part of
the software code to determine the expected value.

12. The method of claim 1, wherein the software code is
dynamically typed, and determining the expected value com-
prises inferring that a variable external to a function has a
same variable type as a variable internal to the function.

13. The method of claim 1, wherein the software code is
dynamically typed, and determining the expected value com-
prises inferring that a first variable has a same variable type as
a second variable that has been observed during execution of
the software code to have had the same value.

14. The method of claim 1, wherein the software code
comprises code in a dynamically typed programming lan-
guage, the dynamic attribute comprises a variable type of a
variable, and the method further comprises:

determining that the expected value of the dynamic
attribute is a 32 bit integer;

configuring the optimized version to store the variable as a
32 bit integer; and

transitioning into executing the un-optimized version in an
event a buffer in which the variable is stored overflows.

15. The method of claim 1, wherein reverting to a version
of the software code that is not based on the assumption
includes executing the version of the software code that is not
based on the assumption.
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16. A computer system, comprising:

a memory configured to store a software code; and

processor coupled to the memory, and configured to cause

the computer system to:

during a compilation of the software code:

determine, for a dynamic attribute associated with the soft-

ware code, an expected value that the dynamic attribute
will take on at a runtime of the software code, wherein
the software code is dynamically typed, and determining
the expected value comprises applying a static type
inference analysis to the dynamically typed software
code;

generate an un-optimized version of the software code,

wherein the un-optimized version is based on an
assumption that the dynamic attribute will not have the
expected value;

generate an optimized version of the software code,

wherein the optimized version is based on an assump-
tion that the dynamic attribute will have the expected
value; and

modify the optimized version to include code that is con-

figured to cause the optimized version during execution,
to:

transition into executing to the un-optimized version in an

event it is determined that the dynamic attribute does not
have the expected value, and

revert to executing the optimized version subsequent to the

transition, in the event it is determined that in at least a
threshold number of instances observed subsequent to
the transition the dynamic attribute has had the expected
value.

17. The system of claim 16, wherein the dynamic attribute
comprises one or more of the following: a variable type; a
location in memory; a location in which a global object,
property, or variable is stored; a contents of a global function
or method; and a value of a global property or variable.

18. A non-transitory computer readable storage medium
configured to store instructions that, when executed by a
processor included in a computing device, cause the comput-
ing device to perform steps that include:

during a compilation of a software code:

determining, for a dynamic attribute associated with the

software code, an expected value that the dynamic
attribute will take on at a runtime of the software code,
wherein the software code is dynamically typed, and
determining the expected value comprises applying a
static type inference analysis to the dynamically typed
software code;

generating an un-optimized version of the software code,

wherein the un optimized version is based on an assump-
tion that the dynamic attribute will not have the expected
value;

generating an optimized version of the software code,

wherein the optimized version is based on an assump-
tion that the dynamic attribute will have the expected
value; and

modifying the optimized version to include code that is

configured to cause the optimized version of the soft-
ware code, during execution, to:

transition into executing to the un-optimized version in an

event it is determined that the dynamic attribute does not
have the expected value, and

revert to executing the optimized version of the code sub-

sequent to the transition, in the event it is determined that
in at least a threshold number of instances observed
subsequent to the transition the dynamic attribute has
had the expected value.
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19. The non-transitory computer readable storage medium
of claim 18, wherein determining the expected value com-
prises analyzing statically all or part of the software code to
determine the expected value.

20. The non-transitory computer readable storage medium 5
of claim 18, wherein the software code is dynamically typed,
and determining the expected value comprises inferring that a
variable external to a function has a same variable type as a
variable internal to the function.

* * * * *



